We classify almost C(α)-manifolds, which satisfy the curvature conditions (Z ) ̃(ξ,X)R=0, (Z ) ̃(ξ,X) (Z ) ̃=0, (Z ) ̃(ξ,X)S=0 and (Z ) ̃(ξ,X)P=0, where (Z ) ̃ is the concircular curvature tensor, P is the Weyl projective curvature tensor, S is the Ricci tensor and R is Riemannian curvature tensor of manifold.
Published in |
Pure and Applied Mathematics Journal (Volume 4, Issue 1-2)
This article belongs to the Special Issue Applications of Geometry |
DOI | 10.11648/j.pamj.s.2015040102.18 |
Page(s) | 31-34 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Almost C(α)-Manifold, Concircular Curvature Tensor, Projective Curvature Tensor
[1] | C. Özgür and M. M. Tripathi, On P-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor, Turkish Journal of Math. , 31(2007), 171 – 179. |
[2] | D. E. Blair, J. S. Kim and M. M. Tripathi, On concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42(2005), 883-892. |
[3] | D. Janssens and L. Vanhecke, Almost contact structure and curvature tensors, Kodai Math.J., 4(1981), 1-27. |
[4] | D. Perrone, Contact Riemannian manifolds satisfying R(X, ξ)•R = 0, Yokohama Math. J. 39 (1992), 2, 141-149. |
[5] | K. Yano and M. Kon, Structures on manifolds, Series in Pure Math., Vol. 3, Word Sci., (1984). |
[6] | K. Yano, Concircular geometry I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200. |
[7] | M. M. Tripathi and J. S. Kim, On the concircular curvature tensor of a (κ, µ)-manifold, Balkan J. Geom. Appl. 9, no.1, 104 - 114 (2004). |
[8] | Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y).R = 0, the local version, Diff. Geom., 17(1982), 531-582. |
APA Style
Mehmet Atçeken, Umit Yildirim. (2015). On an Almost C(α)-Manifold Satisfying Certain Conditions on the Concircular Curvature Tensor. Pure and Applied Mathematics Journal, 4(1-2), 31-34. https://doi.org/10.11648/j.pamj.s.2015040102.18
ACS Style
Mehmet Atçeken; Umit Yildirim. On an Almost C(α)-Manifold Satisfying Certain Conditions on the Concircular Curvature Tensor. Pure Appl. Math. J. 2015, 4(1-2), 31-34. doi: 10.11648/j.pamj.s.2015040102.18
AMA Style
Mehmet Atçeken, Umit Yildirim. On an Almost C(α)-Manifold Satisfying Certain Conditions on the Concircular Curvature Tensor. Pure Appl Math J. 2015;4(1-2):31-34. doi: 10.11648/j.pamj.s.2015040102.18
@article{10.11648/j.pamj.s.2015040102.18, author = {Mehmet Atçeken and Umit Yildirim}, title = {On an Almost C(α)-Manifold Satisfying Certain Conditions on the Concircular Curvature Tensor}, journal = {Pure and Applied Mathematics Journal}, volume = {4}, number = {1-2}, pages = {31-34}, doi = {10.11648/j.pamj.s.2015040102.18}, url = {https://doi.org/10.11648/j.pamj.s.2015040102.18}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.pamj.s.2015040102.18}, abstract = {We classify almost C(α)-manifolds, which satisfy the curvature conditions (Z ) ̃(ξ,X)R=0, (Z ) ̃(ξ,X) (Z ) ̃=0, (Z ) ̃(ξ,X)S=0 and (Z ) ̃(ξ,X)P=0, where (Z ) ̃ is the concircular curvature tensor, P is the Weyl projective curvature tensor, S is the Ricci tensor and R is Riemannian curvature tensor of manifold.}, year = {2015} }
TY - JOUR T1 - On an Almost C(α)-Manifold Satisfying Certain Conditions on the Concircular Curvature Tensor AU - Mehmet Atçeken AU - Umit Yildirim Y1 - 2015/04/11 PY - 2015 N1 - https://doi.org/10.11648/j.pamj.s.2015040102.18 DO - 10.11648/j.pamj.s.2015040102.18 T2 - Pure and Applied Mathematics Journal JF - Pure and Applied Mathematics Journal JO - Pure and Applied Mathematics Journal SP - 31 EP - 34 PB - Science Publishing Group SN - 2326-9812 UR - https://doi.org/10.11648/j.pamj.s.2015040102.18 AB - We classify almost C(α)-manifolds, which satisfy the curvature conditions (Z ) ̃(ξ,X)R=0, (Z ) ̃(ξ,X) (Z ) ̃=0, (Z ) ̃(ξ,X)S=0 and (Z ) ̃(ξ,X)P=0, where (Z ) ̃ is the concircular curvature tensor, P is the Weyl projective curvature tensor, S is the Ricci tensor and R is Riemannian curvature tensor of manifold. VL - 4 IS - 1-2 ER -