In this study, the effect of duration on the growth of rutile TiO2 nanostructures (Ns) deposited onto the p-Si (111) substrate on the structural, morphological, and optical properties of rutile TiO2 Ns has been investigated. All Si substrates were seeded with a TiO2 seed layer synthesized using a radio-frequency (RF) reactive magnetron sputtering system. Chemical bath deposition method (CBD) was employed to grow rutile TiO2 Ns on seeded Si substrates at duration time of growth (1, 2, 3, and 4 h). X-ray diffraction, Raman spectroscopy,and field-emission scanning electron microscopy (FESEM) analyses demonstrated the tetragonal rutile structure of the synthesized TiO2 Ns with the highest (110) peak intensity. Optical properties were investigatedby using photoluminescence (PL) spectroscopy of the grown rutile Ns, with the spectra exhibiting the sharpest (smallest FWHMs) and highest peak revealed the high quality of TiO2 Ns with few defects was found for the sample prepared for 3 h, which reflects the crystalline quality. These results show that the optimized growth conditions yield very high quality TiO2 Ns on p-type (111)-oriented silicon substrates. A fast-response p-n heterojunction photodiode was fabricated by depositing Al contacts on the front of the optimal sample via RF reactive magnetron sputtering. Upon illumination of a pulsed UV light (325 nm, 1.6 mW/cm2) at 5 V bias voltage, the device showed 3.8 × 102 sensitivity, the photoresponse peak was 460 mA/W, the response and recovery times were 50.8 and 57.8 ms, respectively.
Published in | American Journal of Nano Research and Applications (Volume 4, Issue 3) |
DOI | 10.11648/j.nano.20160403.11 |
Page(s) | 23-32 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Titanium Dioxide, Rutile Nanostructures, Chemical Bath Deposition, Growthtime, Photodiode
[1] | D. Mardare, M. Tasca, M. Delibas, G. Rusu, On the structural properties and optical transmittance of TiO2 rf sputtered thin films, Applied Surface Science, 156 (2000) 200-206. |
[2] | L. C. Chuang, C. H. Luo, S.h. Yang, The structure and mechanical properties of thick rutile–TiO2 films using different coating treatments, Applied Surface Science, 258 (2011) 297-303. |
[3] | J. Szczyrbowski, G. Bräuer, M. Ruske, J. Bartella, J. Schroeder, A. Zmelty, Some properties of TiO2 layers prepared by medium frequency reactive sputtering, Surface and coatings technology, 112 (1999) 261-266. |
[4] | Z. Han, J. Wang, L. Liao, H. Pan, S. Shen, J. Chen, Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism, Applied Surface Science, 273 (2013) 349-356. |
[5] | V. Caratto, B. Aliakbarian, A.A. Casazza, L. Setti, C. Bernini, P. Perego, M. Ferretti, Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light, Materials Research Bulletin, 48 (2013) 2095-2101. |
[6] | C. J. Li, G. R. Xu, B. Zhang, J.R. Gong, High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods, Applied Catalysis B: Environmental, 115 (2012) 201-208. |
[7] | C. S. Chou, R.Y. Yang, M.H. Weng, C.H. Yeh, Preparation of TiO2/dye composite particles and their applications in dye-sensitized solar cell, Powder Technology, 187 (2008) 181-189. |
[8] | L. Hou, P. Liu, Y. Li, C. Wu, Enhanced performance in organic light-emitting diodes by sputtering TiO2 ultra-thin film as the hole buffer layer, Thin Solid Films, 517 (2009) 4926-4929. |
[9] | C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang, UV sensor based on TiO2 nanorod arrays on FTO thin film, Sensors and Actuators B: Chemical, 156 (2011) 114-119. |
[10] | A. MortezaAli, S. R. Sani, Study of growth parameters on structural properties of TiO2 nanowires, Journal of Nanostructure in Chemistry, 3 (2013) 35. |
[11] | Q. Zhu, J. Chen, M. Xu, S. Tian, H. Pan, J. Qian, X. Zhou, Microsphere assembly of rutile TiO2 hierarchically hyperbranched nanorods: CdS sensitization and photovoltaic properties, Solid State Sciences, 13 (2011) 1299-1303. |
[12] | Z. Luo, W. Yang, A. Peng, Y. Zeng, J. Yao, The fabrication of TiO2 nanorods from TiO2 nanoparticles by organic protection assisted template method, Nanotechnology, 20 (2009) 345601. |
[13] | Z. Liu, C. Liu, J. Ya, E. Lei, Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells, Renewable Energy, 36 (2011) 1177-1181. |
[14] | S. K. Pradhan, P.J. Reucroft, F. Yang, A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition, Journal of Crystal Growth, 256 (2003) 83-88. |
[15] | M. S. Wu, C. H. Tsai, T. C. Wei, Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells, Chemical Communications, 47 (2011) 2871-2873. |
[16] | A. More, T. Gujar, J. Gunjakar, C. Lokhande, O. S. Joo, Growth of TiO2 nanorods by chemical bath deposition method, Applied surface science, 255 (2008) 2682-2687. |
[17] | U. M. Patil, S. B. Kulkarni, P. R. Deshmukh, R. R. Salunkhe, C.D. Lokhande, Photosensitive nanostructured TiO2 grown at room temperature by novel “bottom-up” approached CBD method, Journal of Alloys and Compounds, 509 (2011) 6196-6199. |
[18] | T. Suwannaruang, K. Rivera, A. Neramittagapong, K. Wantala, Effects of hydrothermal temperature and time on uncalcined TiO2 synthesis for reactive red 120 photocatalytic degradation, Surface and Coatings Technology, (2014). |
[19] | Y. Zhao, X. Gu, Y. Qiang, Influence of growth time and annealing on rutile TiO2single-crystal nanorod arrays synthesized by hydrothermal method in dye-sensitized solar cells, Thin Solid Films, 520 (2012) 2814-2818. |
[20] | D. Regonini, F. Clemens, Anodized TiO2 Nanotubes: Effect of anodizing time on film length, morphology and photoelectrochemical properties, Materials Letters, 142 (2015) 97-101. |
[21] | M. Altomare, M. Pozzi, M. Allieta, L.G. Bettini, E. Selli, H2 and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity, Applied Catalysis B: Environmental, 136 (2013) 81-88. |
[22] | A. Bandgar, S. Sabale, S. Pawar, Studies on influence of reflux time on synthesis of nanocrystalline TiO2 prepared by peroxotitanate complex solutions, Ceramics International, 38 (2012) 1905-1913. |
[23] | H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chemistry of Materials, 7 (1995) 663-671. |
[24] | J. Zou, Q. Zhang, K. Huang, N. Marzari, Ultraviolet photodetectors based on anodic TiO2 nanotube arrays, The Journal of Physical Chemistry C, 114 (2010) 10725-10729. |
[25] | S. Aksoy, Y. Caglar, Structural transformations of TiO2 films with deposition temperature and electrical properties of nanostructure n-TiO2/p-Si heterojunction diode, Journal of Alloys and Compounds, 613 (2014) 330-337. |
[26] | Y.-H. Chang, C.-M. Liu, C. Chen, H.-E. Cheng, The heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction, Nanoscale research letters, 7 (2012) 1-7. |
[27] | D. Zhang, X. Gu, F. Jing, F. Gao, J. Zhou, S. Ruan, High performance ultraviolet detector based on TiO2/ZnO heterojunction, Journal of Alloys and Compounds, 618 (2015) 551-554. |
[28] | A.M. Selman, Z. Hassan, M. Husham, Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values, Measurement, 56 (2014) 155-162. |
[29] | A. M. Selman, Z. Hassan, Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal–semiconductor–metal UV detector, Optical Materials, 44 (2015) 37-47. |
[30] | A. M. Selman, Z. Hassan, Growth and characterization of rutile TiO2 nanorods on various substrates with fabricated fast-response metal–semiconductor–metal UV detector based on Si substrate, Superlattices and Microstructures, 83 (2015) 549-564. |
[31] | A. M. Selman, Z. Hassan, M. Husham, N. M. Ahmed, A high-sensitivity, fast-response, rapid-recovery p–n heterojunction photodiode based on rutile TiO2 nanorod array on p-Si (111), Applied Surface Science, 305 (2014) 445-452. |
[32] | A. M. Selman, Z. Hassan, Highly sensitive fast-response UV photodiode fabricated from rutile TiO2 nanorod array on silicon substrate, Sensors and Actuators A: Physical, 221 (2015) 15-21. |
[33] | A. M. Selman, Z. Hassan, Influence of deposition temperature on the growth of rutile TiO2 nanostructures by CBD method on seed layer prepared by RF magnetron sputtering, Superlattices and Microstructures, 64 (2013) 27-36. |
[34] | S. K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R.R. Bhatia, P. K. Mishra, V. Manjuladevi, R. K. Gupta, J. Akhtar, Synthesis, phase to phase deposition and characterization of rutile nanocrystalline titanium dioxide (TiO2) thin films, Applied Surface Science, 264 (2013) 737-742. |
[35] | N. R. Mathews, E. R. Morales, M. A. Cortés-Jacome, J. A. Toledo Antonio, TiO2 thin films – Influence of annealing temperature on structural, optical and photocatalytic properties, Solar Energy, 83 (2009) 1499-1508. |
[36] | J. J. Yuan, H. D. Li, S.Y. Gao, D. D. Sang, L.A. Li, D. Lu, Hydrothermal synthesis, characterization and properties of TiO2 nanorods on boron-doped diamond film, Materials Letters, 64 (2010) 2012-2015. |
[37] | B. Choudhury, A. Choudhury, Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature, International Nano Letters, 3 (2013) 55. |
[38] | J. Archana, M. Navaneethan, Y. Hayakawa, Hydrothermal growth of monodispersed rutile TiO2 nanorods and functional properties, Materials Letters, 98 (2013) 38-41. |
[39] | Y. Han, G. Li, Z. Zhang, Synthesis and optical properties of rutile TiO2 microspheres composed of radially aligned nanorods, Journal of Crystal Growth, 295 (2006) 50-53. |
[40] | Q. Gao, X. Wu, Y. Fan, X. Zhou, Low temperature fabrication of nanoflower arrays of rutile TiO2 on mica particles with enhanced photocatalytic activity, Journal of Alloys and Compounds, 579 (2013) 322-329. |
[41] | J. Zhou, G. Zhao, G. Han, B. Song, Solvothermal growth of three-dimensional TiO2 nanostructures and their optical and photocatalytic properties, Ceramics International, 39 (2013) 8347-8354. |
[42] | D. Dubal, D. Dhawale, A. More, C. Lokhande, Synthesis and characterization of photosensitive TiO2 nanorods by controlled precipitation route, Journal of materials science, 46 (2011) 2288-2293. |
[43] | H. Nakajima, T. Mori, Q. Shen, T. Toyoda, Photoluminescence study of mixtures of anatase and rutile TiO2 nanoparticles: Influence of charge transfer between the nanoparticles on their photoluminescence excitation bands, Chemical Physics Letters, 409 (2005) 81-84. |
[44] | W. Zhang, J. Zhao, Z. Liu, Z. Liu, Z. Fu, Influence of growth temperature of TiO2 buffer on structure and PL properties of ZnO films, Applied Surface Science, 256 (2010) 4423-4425. |
[45] | J. Preclíková, P. Galář, F. Trojánek, B. Rezek, Y. Němcová, P. Malý, Photoluminescence of nanocrystalline titanium dioxide films loaded with silver nanoparticles, Journal of Applied Physics, 109 (2011) 083528. |
[46] | M. Vishwas, K. Narasimha Rao, R. Chakradhar, Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO2 thin films, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99 (2012) 33-36. |
[47] | H. Tang, H. Berger, P.E. Schmid, F. Lévy, Optical properties of anatase (TiO2), Solid State Communications, 92 (1994) 267-271. |
[48] | J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture, The journal of physical chemistry C, 111 (2007) 693-699. |
[49] | X. Shen, J. Zhang, B. Tian, Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile, Journal of hazardous materials, 192 (2011) 651-657. |
[50] | L. Dong, K. Cheng, W. Weng, C. Song, P. Du, G. Shen, G. Han, Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates, Thin Solid Films, 519 (2011) 4634-4640. |
[51] | R. Chen, M. Wang, Synthesis of hierarchical TiO2 micro/nanostructure and its application in hybrid solar cell, Materials Letters, 69 (2012) 41-44. |
[52] | Y. Fu, W. Cao, Preparation of transparent TiO2 nanocrystalline film for UV sensor, Chinese Science Bulletin, 51 (2006) 1657-1661. |
[53] | B. E. A. Saleh, M. C. Teich, Semiconductor Photon Detectors, in: Fundamentals of Photonics, John Wiley & Sons, Inc., 2001, pp. 644-695. |
[54] | N. K. Hassan, M. R. Hashim, N. K. Allam, Low power UV photodetection characteristics of cross-linked ZnO nanorods/nanotetrapods grown on silicon chip, Sensors and Actuators A: Physical, 192 (2013) 124-129. |
[55] | J. J. Hassan, M. A. Mahdi, C. W. Chin, Z. Hassan, H. Abu-Hassan, Microwave assisted chemical bath deposition of vertically aligned ZnO nanorods on a variety of substrates seeded by PVA–Zn(OH)2 nanocomposites, Applied Surface Science, 258 (2012) 4467-4472. |
[56] | N. Al-Hardan, M. Abdullah, N. Ahmed, F. Yam, A. A. Aziz, UV photodetector behavior of 2D ZnO plates prepared by electrochemical deposition, Superlattices and Microstructures, 51 (2012) 765-771. |
[57] | X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei, S. Ruan, Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes, Applied Physics Letters, 94 (2009) 123502. |
[58] | L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, X. Fang, An Optimized Ultraviolet‐A Light Photodetector with Wide‐Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt, Advanced Materials, 24 (2012) 2305-2309. |
[59] | N. Naderi, M. Hashim, Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates, Journal of Alloys and Compounds, 552 (2013) 356-362. |
[60] | F. H. Babaei, M. M. Lajvardi, F.A. Boroumand, Large area Ag–TiO2 UV radiation sensor fabricated on a thermally oxidized titanium chip, Sensors and Actuators A: Physical, 173 (2012) 116-121. |
[61] | N. Hassan, M. Hashim, Flake-like ZnO nanostructures density for improved absorption using electrochemical deposition in UV detection, Journal of Alloys and Compounds, 577 (2013) 491-497. |
[62] | H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, W. Chen, S. Ruan, Q. Xu, TiO2 based metal-semiconductor-metal ultraviolet photodetectors, Applied physics letters, 90 (2007) 201118-201118-201113. |
[63] | D. Çalışkan, B. Bütün, Ş. Özcan, E. Özbay, Metal–semiconductor–metal photodetector on as-deposited TiO2 thin films on sapphire substrate, Journal of Vacuum Science & Technology B, 31 (2013) 020606. |
[64] | W. J. Lee, M. H. Hon, An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction, Applied Physics Letters, 99 (2011) 251102. |
[65] | C. M. Liu, C. Chen, H. E. Cheng, Ultraviolet Photoresponse of TiO2 Nanotube Arrays Fabricated by Atomic Layer Deposition, Electrochemical and Solid-State Letters, 14 (2011) K33-K35. |
APA Style
Abbas M. Selman. (2017). Studies on the Influence of Growth Time on the Rutile TiO2 Nanostructures Prepared on Si Substrates with Fabricated High-Sensitivity and Fast-Response p-n Heterojunction Photodiode. American Journal of Nano Research and Applications, 4(3), 23-32. https://doi.org/10.11648/j.nano.20160403.11
ACS Style
Abbas M. Selman. Studies on the Influence of Growth Time on the Rutile TiO2 Nanostructures Prepared on Si Substrates with Fabricated High-Sensitivity and Fast-Response p-n Heterojunction Photodiode. Am. J. Nano Res. Appl. 2017, 4(3), 23-32. doi: 10.11648/j.nano.20160403.11
@article{10.11648/j.nano.20160403.11, author = {Abbas M. Selman}, title = {Studies on the Influence of Growth Time on the Rutile TiO2 Nanostructures Prepared on Si Substrates with Fabricated High-Sensitivity and Fast-Response p-n Heterojunction Photodiode}, journal = {American Journal of Nano Research and Applications}, volume = {4}, number = {3}, pages = {23-32}, doi = {10.11648/j.nano.20160403.11}, url = {https://doi.org/10.11648/j.nano.20160403.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.20160403.11}, abstract = {In this study, the effect of duration on the growth of rutile TiO2 nanostructures (Ns) deposited onto the p-Si (111) substrate on the structural, morphological, and optical properties of rutile TiO2 Ns has been investigated. All Si substrates were seeded with a TiO2 seed layer synthesized using a radio-frequency (RF) reactive magnetron sputtering system. Chemical bath deposition method (CBD) was employed to grow rutile TiO2 Ns on seeded Si substrates at duration time of growth (1, 2, 3, and 4 h). X-ray diffraction, Raman spectroscopy,and field-emission scanning electron microscopy (FESEM) analyses demonstrated the tetragonal rutile structure of the synthesized TiO2 Ns with the highest (110) peak intensity. Optical properties were investigatedby using photoluminescence (PL) spectroscopy of the grown rutile Ns, with the spectra exhibiting the sharpest (smallest FWHMs) and highest peak revealed the high quality of TiO2 Ns with few defects was found for the sample prepared for 3 h, which reflects the crystalline quality. These results show that the optimized growth conditions yield very high quality TiO2 Ns on p-type (111)-oriented silicon substrates. A fast-response p-n heterojunction photodiode was fabricated by depositing Al contacts on the front of the optimal sample via RF reactive magnetron sputtering. Upon illumination of a pulsed UV light (325 nm, 1.6 mW/cm2) at 5 V bias voltage, the device showed 3.8 × 102 sensitivity, the photoresponse peak was 460 mA/W, the response and recovery times were 50.8 and 57.8 ms, respectively.}, year = {2017} }
TY - JOUR T1 - Studies on the Influence of Growth Time on the Rutile TiO2 Nanostructures Prepared on Si Substrates with Fabricated High-Sensitivity and Fast-Response p-n Heterojunction Photodiode AU - Abbas M. Selman Y1 - 2017/01/10 PY - 2017 N1 - https://doi.org/10.11648/j.nano.20160403.11 DO - 10.11648/j.nano.20160403.11 T2 - American Journal of Nano Research and Applications JF - American Journal of Nano Research and Applications JO - American Journal of Nano Research and Applications SP - 23 EP - 32 PB - Science Publishing Group SN - 2575-3738 UR - https://doi.org/10.11648/j.nano.20160403.11 AB - In this study, the effect of duration on the growth of rutile TiO2 nanostructures (Ns) deposited onto the p-Si (111) substrate on the structural, morphological, and optical properties of rutile TiO2 Ns has been investigated. All Si substrates were seeded with a TiO2 seed layer synthesized using a radio-frequency (RF) reactive magnetron sputtering system. Chemical bath deposition method (CBD) was employed to grow rutile TiO2 Ns on seeded Si substrates at duration time of growth (1, 2, 3, and 4 h). X-ray diffraction, Raman spectroscopy,and field-emission scanning electron microscopy (FESEM) analyses demonstrated the tetragonal rutile structure of the synthesized TiO2 Ns with the highest (110) peak intensity. Optical properties were investigatedby using photoluminescence (PL) spectroscopy of the grown rutile Ns, with the spectra exhibiting the sharpest (smallest FWHMs) and highest peak revealed the high quality of TiO2 Ns with few defects was found for the sample prepared for 3 h, which reflects the crystalline quality. These results show that the optimized growth conditions yield very high quality TiO2 Ns on p-type (111)-oriented silicon substrates. A fast-response p-n heterojunction photodiode was fabricated by depositing Al contacts on the front of the optimal sample via RF reactive magnetron sputtering. Upon illumination of a pulsed UV light (325 nm, 1.6 mW/cm2) at 5 V bias voltage, the device showed 3.8 × 102 sensitivity, the photoresponse peak was 460 mA/W, the response and recovery times were 50.8 and 57.8 ms, respectively. VL - 4 IS - 3 ER -