We employ the parametric generalization of Nikiforov-Uvarov method to obtain the bound state solutions the relativistic Klein-Gordon equation under equal scalar and vector modified Scarf II potential. The energy eigenvalues and the corresponding wave functions expressed in term of Jacobi polynomial are equally obtained. Our results will have many applications in many branches of physics especially nuclear physics where it could be used in describing nuclei interactions .For further guide to interested readers, we have also provided numerical data which discuses the energy spectra.
Published in | International Journal of High Energy Physics (Volume 2, Issue 4) |
DOI | 10.11648/j.ijhep.20150204.12 |
Page(s) | 50-55 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Klein-Gordon Equation, Modified Scarf II Potential, Bound State Solution, Nikiforov-Uvarov Method
[1] | L. Z. Yi, Y. F. Diao, J. Y. Liu, C. S. Jia (2004). Phys.Lett. A. 333, 212. |
[2] | G. F. Wei, C. Y. Long, Z. He, S. J. Qin and J.Zhao (2007). Phys. Scr. 76, 442. |
[3] | X. C.Zhang, Q. W. Lia, C. S. Jia, L. Z. Wang (2005). Phys. Lett. A. 340, 59 . |
[4] | W. A. Yahya, K. J. Oyewumi, C. O. Akoshile and T. T. Ibrahim (2010). J. Vect Relat. 5(3), 27. |
[5] | A. D.Antia, A. N.Ikot, E. E.Ituen and I.O.Akpan (2012). Sri Lankan Journal of Physics 13(1), 27-40. |
[6] | K. J. Oyewumi and C. O. Akoshile (2010). Eur. Phys. J. A 45, 311. |
[7] | A. N. Ikot, L. E. Akpabio and E. J. Uwah (2011) EJTP, 25(8), 225-232. |
[8] | A. N. Ikot, A. B. Udoimuk and L. E. Akpabio (2011). Am. J. Sci. Ind. Res. 2(2), 179-183. |
[9] | H. Akcay, C. Tezcan (2009). Int. J. Mod. Phys C. 20(6), 931. |
[10] | C. Berkdemi, A. Berkdemir and R. Sever (2006). J. Phys. A : Math Gen. 399, 13455. |
[11] | A. desouza Dutra and M. Hott (2006). Phys Lett. A 356, 215. |
[12] | S. Ikhdair and R. Sever (2008). Int. J. Mod. Phys C 19, 1425. |
[13] | W.C. Qiang (2004). Chin. Phys. 13, 571. |
[14] | W. C. Qiang (2003). Chin. Phys. 12, 1054. |
[15] | A.D. Alhaidari (2001). J. Phys. A: Math. Gen. 34, 9827. |
[16] | H. Ciftci, R. L. Hall and N. Saad (2003). J. Phys. A. 36, 11807. |
[17] | C. S. Jia, P. Gao and X. L. Peng (2006). J. Phys. A. Math. Gen. 39, 7737. |
[18] | Y. F. Cheng and T. Q. Dai (2007). Chin. J. Phys. 45, 480. |
[19] | Y. F. Diao, L. Z. Yi and C. S. Jia (2004). Phys. Lett A 332, 157. |
[20] | Y. Xu, S. He and C. S. Jia (2010). Phys Scr. 81, 045001. |
[21] | C. S. Jia,T. Chen and L. G. Cui (2009). Phys Lett. A 373, 1621. |
[22] | A. F. Nikiforov and V. B. Uvarov (1988). Special Functions of Mathematical Physics. (Basel, Birkhauser). |
[23] | C. Tezcan and R. Sever (2008). Int. J. Theor. Phys 47, 1471. |
[24] | W. C. Qiang and S. H. Dong (2008). Phys. Lett. A 372, 4789. |
[25] | S. Flugge, Practical Quantum Mechanics (1974). (Springer, Berlin). |
[26] | G. Levai (2011). Int. J. Theor. Phys. 50, 997. |
[27] | R. I. Greene and C. Aldrich (1976). Phys. Rev. A 14, 2363. |
[28] | A. N. Ikot, E. Maghsoodi, A. D. Antia, H. Hassanabadi and S. Zarrinkamar (2015). Arab. J. Sci. Eng. DOI 10.1007/s13369-015-1602-4. |
APA Style
Akaninyene Daniel Antia, Ita Okon Akpan, Akaninyene Okon Akankpo. (2015). Relativistic Treatment of Spinless Particles Subject to Modified Scarf II Potential. International Journal of High Energy Physics, 2(4), 50-55. https://doi.org/10.11648/j.ijhep.20150204.12
ACS Style
Akaninyene Daniel Antia; Ita Okon Akpan; Akaninyene Okon Akankpo. Relativistic Treatment of Spinless Particles Subject to Modified Scarf II Potential. Int. J. High Energy Phys. 2015, 2(4), 50-55. doi: 10.11648/j.ijhep.20150204.12
AMA Style
Akaninyene Daniel Antia, Ita Okon Akpan, Akaninyene Okon Akankpo. Relativistic Treatment of Spinless Particles Subject to Modified Scarf II Potential. Int J High Energy Phys. 2015;2(4):50-55. doi: 10.11648/j.ijhep.20150204.12
@article{10.11648/j.ijhep.20150204.12, author = {Akaninyene Daniel Antia and Ita Okon Akpan and Akaninyene Okon Akankpo}, title = {Relativistic Treatment of Spinless Particles Subject to Modified Scarf II Potential}, journal = {International Journal of High Energy Physics}, volume = {2}, number = {4}, pages = {50-55}, doi = {10.11648/j.ijhep.20150204.12}, url = {https://doi.org/10.11648/j.ijhep.20150204.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijhep.20150204.12}, abstract = {We employ the parametric generalization of Nikiforov-Uvarov method to obtain the bound state solutions the relativistic Klein-Gordon equation under equal scalar and vector modified Scarf II potential. The energy eigenvalues and the corresponding wave functions expressed in term of Jacobi polynomial are equally obtained. Our results will have many applications in many branches of physics especially nuclear physics where it could be used in describing nuclei interactions .For further guide to interested readers, we have also provided numerical data which discuses the energy spectra.}, year = {2015} }
TY - JOUR T1 - Relativistic Treatment of Spinless Particles Subject to Modified Scarf II Potential AU - Akaninyene Daniel Antia AU - Ita Okon Akpan AU - Akaninyene Okon Akankpo Y1 - 2015/07/25 PY - 2015 N1 - https://doi.org/10.11648/j.ijhep.20150204.12 DO - 10.11648/j.ijhep.20150204.12 T2 - International Journal of High Energy Physics JF - International Journal of High Energy Physics JO - International Journal of High Energy Physics SP - 50 EP - 55 PB - Science Publishing Group SN - 2376-7448 UR - https://doi.org/10.11648/j.ijhep.20150204.12 AB - We employ the parametric generalization of Nikiforov-Uvarov method to obtain the bound state solutions the relativistic Klein-Gordon equation under equal scalar and vector modified Scarf II potential. The energy eigenvalues and the corresponding wave functions expressed in term of Jacobi polynomial are equally obtained. Our results will have many applications in many branches of physics especially nuclear physics where it could be used in describing nuclei interactions .For further guide to interested readers, we have also provided numerical data which discuses the energy spectra. VL - 2 IS - 4 ER -