Recent mathematical, theoretical and experimental studies have confirmed via measurements on Earth Zwicky's hypothesis according to which the cosmological redshift is due to galactic light losing energy to intergalactic media without the expansion of the universe. The main problem of the ensuing return to a static universe is the inevitable prediction that the universe should collapse due to gravitational attractions among galaxies. In this paper, we review the historical inability by general relativity to achieve a stable universe solely composed of matter, and present apparently for the first time a cosmological model in which the universe achieves stability under the condition of admitting an equal number of matter and antimatter galaxies at such a large mutual distance for which gravitational interactions are ignorable.
Published in |
American Journal of Modern Physics (Volume 5, Issue 2-1)
This article belongs to the Special Issue Issue II: Foundations of Hadronic Mechanics |
DOI | 10.11648/j.ajmp.2016050201.21 |
Page(s) | 185-190 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Antimatter, Static Universe, Universe Stability
[1] | Einstein, A. 1917. “Kosmologische betrachtungen zur allgemeinen relativit¨atstheorie.” Sitzungsber., K. Preuss. Akad. Wiss. 142-152. English translation in H. A. Lorentz, et al., eds. 1952. “The principle of relativity”. Dover Publications, Mineola, New York, 175-188. |
[2] | De Sitter, W. 1917a. “On the relativity of inertia. Remarks concerning Einsteins latest hypothesis.”, Proc. R. Acad. Amsterdam 1217-1225. |
[3] | De Sitter, W. 1917b. “Einsteins theory of gravitation and its astronomical consequences.” Third paper. Mon. Not. R. Astron. Soc. 78: 3-28. |
[4] | Hubble, E. 1929. “A relation between distance and radial velocity among extra-galactic nebulae.”, Proc. Nat. Acad. Sci. 15: 168-173. |
[5] | Eddington, A. S. 1923. “The mathematical theory of relativity”, 2nd ed. Cambridge University Press, Cambridge. |
[6] | Weyl, H. 1923. “Raum, zeit, materie: vorlesungen ¨uber allgemeine relativit¨atstheorie, f¨unft mgearbeitete auflage.” Julius Springer, Berlin. |
[7] | Weyl, H. 1923. “Zur allgemeinen relativit¨atstheorie.” Phys. Z. 24: 230-232 (1923b). English translation: Weyl, H. 2009. “Republication of: On the general relativity theory”. Gen. Relativ. Gravitat. 35: 1661-1666. |
[8] | Slipher, V. M., 1913, “The radial velocity of the Andromeda Nebula.” Lowell Observatory Bulletin 2: 56-57. |
[9] | Friedmann, A. 1922: “¨Uber die Kr¨ummung des Raumes.” Z. Phys. 10: 377-386. English translation: Friedman, A. “On the curvature of space.” Gen. Rel. Gravitat. 31: 1991-2000. |
[10] | Friedmann, A. 1924. “¨Uber die M¨oglichkeit einer Welt mit konstanter negativer Kr¨ummung des Raumes.” Z. Phys. 21: 326-332. English translation: Friedmann, A. “On the possibility of a world with constant negative curvature of space.” Gen. Rel. Gravitat. 31 2001-2008. |
[11] | Lemaître, G. 1927. “Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nbuleuses extra-galactiques.” Annales de la Société Scientifique de Bruxelles A, 47: 49-59. English translation: Lemaître, G. 1931. “A Homogeneous universe of Constant Mass and Increasing Radius accounting for the Radial Velocity of Extra-Galactic Nebulae.” Mon. Not. R. Astron. Soc. 91: 483-490. |
[12] | Einstein, A. 1931. Letter to R. Tolman, Einstein Archives call no. 23-30. Post-dated June 27, 1931. |
[13] | Einstein, A. and W. de Sitter. 1932 “On the relation between the expansion and the mean density of the universe” Proc. Nat. Acad. Sci. 18: 213-214. |
[14] | P. Kerszberg, 1989, "The Einstein - de Sitter controversy of 1916-1917 and the rise of relativistic cosmology", Einstein and the history of general relativity, p. 325–366. |
[15] | D. Janzen, 2016 "Einstein's cosmological considerations", 53 pages. Submitted to Eur Phy J (H), arXiv: 1402.3212. |
[16] | Einstein, A. 1931. Zum kosmologischen Problem, Einstein Archives call no. 23-30. |
[17] | C. O’Raifeartaigh and B. McCann, "Einstein’s cosmic model of 1931 revisited: an analysis and translation of a forgotten model of the universe", European Physical Journal H 39 (2014) 63-85. DOI: 10.1140/epjh/e2013-40038-x and arXiv: 1312.2192. |
[18] | Nature 506, 418–419 (27 February 2014). |
[19] | Zwicky, F., 1929, Proceedings of the National Academy of Sciences of the United States of America, 773. |
[20] | Hoyle, F., 1948 Mon. Not. R. Astron. Soc. 108, 372-382. |
[21] | VV. AA., “Open Letter on Cosmology”, New Scientist, issue 2448 May 22, 2004 http://homepages.xnet.co.nz/~hardy/cosmologystatement.html. |
[22] | http://www.cosmology.info/. |
[23] | Eric J. Lerner, Renato Falomo, and Riccardo Scarpa, "UV surface brightness of galaxies from the local universe to z ~ 5", International Journal of Modern Physics D Vol. 23, No. 6 (2014) 1450058 DOI: 10.1142/S0218271814500588. |
[24] | Massimo Villata. “‘Dark Energy’ in the Local Void.” Astrophysics and Space Science (2012) 339: 7-12. DOI: 10.1007/s10509-012-0994-9 and arXiv: 1201.3810v1 [astro-ph. CO]. |
[25] | Massimo Villata. “CPT symmetry and antimatter gravity in general relativity”, EPL (Europhysics Letters), Volume 94, Number 2, 2011. |
[26] | Dragan Hajdukovic. “Quantum vacuum and virtual gravitational dipoles: the solution to the dark energy problem?” Astrophysics and Space Science. DOI: 10.1007/s10509-012-0992-y. |
[27] | Fleming, 2014, P. Collected papers, interviews, seminars and international press releases on the lack of expansion of the universe, http://www.santilli-foundation.org/docs/No-universe-expans.pdf. |
[28] | Santilli, R. M., 2007, "The etherino and/or the neutrino hypothesis," Foundation of Physics 37, 670, http://www.santilli-foundation.org/docs/EtherinoFoundPhys.pdf. |
[29] | R. M. Santilli, 2005, Isodual Theory of Antimatter with Applications to Antigravity, Grand Unifications and Cosmology, Springer, http://www.santilli-foundation.org/docs/santilli-79.pdf. |
[30] | Fleming, 222015, P. Scientific references and PR Web News Releases on\\Santilli isodual Theory of Antimatter http://www.santilli-foundation.org/docs/Santilli-Telescope-Refs-1-15.p. |
APA Style
S. Beghella-Bartoli, R. M. Santilli. (2016). Possible Role of Antimatter Galaxies for the Stability of the Universe. American Journal of Modern Physics, 5(2-1), 185-190. https://doi.org/10.11648/j.ajmp.2016050201.21
ACS Style
S. Beghella-Bartoli; R. M. Santilli. Possible Role of Antimatter Galaxies for the Stability of the Universe. Am. J. Mod. Phys. 2016, 5(2-1), 185-190. doi: 10.11648/j.ajmp.2016050201.21
AMA Style
S. Beghella-Bartoli, R. M. Santilli. Possible Role of Antimatter Galaxies for the Stability of the Universe. Am J Mod Phys. 2016;5(2-1):185-190. doi: 10.11648/j.ajmp.2016050201.21
@article{10.11648/j.ajmp.2016050201.21, author = {S. Beghella-Bartoli and R. M. Santilli}, title = {Possible Role of Antimatter Galaxies for the Stability of the Universe}, journal = {American Journal of Modern Physics}, volume = {5}, number = {2-1}, pages = {185-190}, doi = {10.11648/j.ajmp.2016050201.21}, url = {https://doi.org/10.11648/j.ajmp.2016050201.21}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.2016050201.21}, abstract = {Recent mathematical, theoretical and experimental studies have confirmed via measurements on Earth Zwicky's hypothesis according to which the cosmological redshift is due to galactic light losing energy to intergalactic media without the expansion of the universe. The main problem of the ensuing return to a static universe is the inevitable prediction that the universe should collapse due to gravitational attractions among galaxies. In this paper, we review the historical inability by general relativity to achieve a stable universe solely composed of matter, and present apparently for the first time a cosmological model in which the universe achieves stability under the condition of admitting an equal number of matter and antimatter galaxies at such a large mutual distance for which gravitational interactions are ignorable.}, year = {2016} }
TY - JOUR T1 - Possible Role of Antimatter Galaxies for the Stability of the Universe AU - S. Beghella-Bartoli AU - R. M. Santilli Y1 - 2016/06/01 PY - 2016 N1 - https://doi.org/10.11648/j.ajmp.2016050201.21 DO - 10.11648/j.ajmp.2016050201.21 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 185 EP - 190 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.2016050201.21 AB - Recent mathematical, theoretical and experimental studies have confirmed via measurements on Earth Zwicky's hypothesis according to which the cosmological redshift is due to galactic light losing energy to intergalactic media without the expansion of the universe. The main problem of the ensuing return to a static universe is the inevitable prediction that the universe should collapse due to gravitational attractions among galaxies. In this paper, we review the historical inability by general relativity to achieve a stable universe solely composed of matter, and present apparently for the first time a cosmological model in which the universe achieves stability under the condition of admitting an equal number of matter and antimatter galaxies at such a large mutual distance for which gravitational interactions are ignorable. VL - 5 IS - 2-1 ER -