| Peer-Reviewed

Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field

Received: 29 April 2015     Accepted: 13 May 2015     Published: 3 June 2015
Views:       Downloads:
Abstract

In this paper, we investigate the time evolution of the quantum mechanical state of a polaron using the Pekar type variational method on the electric-LO-phonon and the magnetic-LO-phonon strong coupling in a quantum dot. We obtain the Eigen energies and the Eigen functions of the ground state and the first excited state, respectively. In a quantum dot, this system can be viewed as a two level quantum system qubit. The superposition state polaron density oscillates in the quantum dot with a period τ_0when the polaron is in the superposition of the ground and the first-excited states. The spontaneous emission of phonons causes the decoherence of the qubit. We show that the density matrix of the qubit decays with the time while the coherence term of the density matrix element 〖 p〗_01 (〖 or p〗_10) decays with the time as well for different coupling strengths, confinement lengths, and dispersion coefficients. The Shannon entropy is evaluated in order to investigate the decoherence of the system.

Published in American Journal of Modern Physics (Volume 4, Issue 3)
DOI 10.11648/j.ajmp.20150403.16
Page(s) 138-148
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Polaron, Quantum Dot, Qubit, Electric Field, Magnetic Field, Cyclotron Frequency, Shannon Entropy, Decoherence

References
[1] Li W. P., Yin J. W., Yu Y. F., Wang Z.W. and Xiao J.L., J. Low Temp Phys. 160, 112(2010).
[2] Yu Y. F., Li W. P., Yin J. W. and Xiao J.L., J. Low Temp. Phys. 50, 3322(2011)
[3] J.W. Yin, J.L. Xiao, Y.F. Yu, Z.W. Wang, Chin. Phys. B 18, 446(2009).
[4] Jia-kui S., Hong-Juan L., Jing-Lin X., Physica B 404,1961(2009).
[5] Nielsen M.A., Chang I. L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
[6] I. D’Amico, Microelectron. J. 37, 1440 (2006)
[7] Bennett C.H., DiVincenzo D.P., Nature 404, 247 (2000)
[8] Hawrylak P., Korkusinski M., Solid State Commun. 136, 508 (2005)
[9] Sarma S.D., Sousa R.D., Hu X.D., Koiller B., Solid State Commun. 133, 737 (2005)
[10] Yi-Fu Yu, Wei-Ping Li, Ji-Wen Yin, Jing-Lin Xiao, Int. J. Theor. Phys 50, 3322(2011).
[11] Barnes, J.P., Warren, W.S., Phys. Rev. A 60, 4363 (1999)
[12] Tolkunov, D., Privman, V., Phys. Rev. A 69, 062309 (2004)
[13] Grodecka, A., Machnikowski, P., Phys. Rev. B 73, 125306 (2006)
[14] Lovric, M., Krojanski, H.G., Suter, D., Phys. Rev. A 75, 042305 (2007)
[15] Shannon CE. Bell Syst. Tech. J., 27(1), 379(1948)
[16] Sagar RP, Hô M, Mex J. , Chem. Soc. 52(1),60-66(2008).
[17] Guo-Hua Sun, Shi-Hai Dong. Phys. Scr. 87(4), 045003(2013)
[18] L. C. Fai, M. Tchoffo, J. T. Diffo and G. C. Fouokeng, Physical Review & Research International 4(2): 267(2014)
[19] Jing-Lin Xiao, J. Low Temp Phys. 172(1-2), 122 (2013).
[20] Li S.S., Xia J.B., Yang F.H., Niu Z.C., Feng S.L., Zheng H.Z., J. Appl. Phys. 90, 6151 (2001)
[21] Li S.S.,Gui- Lu L., Bai F.S., Feng S.L., Zheng H.Z., Proc. Natl. Acad. Sci. USA 98, 11847 (2001)
[22] Wang Z.W., Xiao J.L., Acta Phys. Sin. 56, 678 (2007)
[23] L.D Landau, E.M. Lifshitz, Quantum Mechanics (Non relativistic Theory) (Pergamon, London, 1987)
[24] Yong Sun, Zhao-Hua Ding and Jing-Lin Xiao, J. Low temp. Phys. 177, 151(2014)
[25] Chen Shihua and Xiao Jing-Lin, Chinese Journal of Electronics 18(2), 2009
[26] A. J. Fotue, S. C. Kenfack, H. Fotsin, M. Tiotsop, L. C. Fai and M.P. Tabue Djemmo, Physical Science international journal 6(1), 15(2015).
[27] Y. Ji-Wen , X. Jing-Lin, Y. Yi-Fu and W. Zi-Wu, Chinese Physics B 18(2), 446(2009)
[28] B.S. Kandemir, A. Cetin, J. Phys. Condens. Matter 17(4), 667(2003)
[29] V. L. Nguyen, M. T. Nguyen and T. D. Nguyen, Physica B 292(1), 159(2000).
[30] C. S. Wang and J. L. Xiao, Mod. Phys. Lett. B 26, 1150003 (2012) [10 pages]
[31] Y. Lepine and G. Bruneau, J. Phys. Condens. Matter 10, 1495(1998).
[32] B. S. Kandemir and T. Altanhan, Eur. Phys. J. B. 33, 227(2003).
Cite This Article
  • APA Style

    Alain Jerve Fotue, Sadem Christian Kenfack, Nsangou Issofa, Maurice Tiotsop, Michel Pascal Tabue Djemmo, et al. (2015). Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field. American Journal of Modern Physics, 4(3), 138-148. https://doi.org/10.11648/j.ajmp.20150403.16

    Copy | Download

    ACS Style

    Alain Jerve Fotue; Sadem Christian Kenfack; Nsangou Issofa; Maurice Tiotsop; Michel Pascal Tabue Djemmo, et al. Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field. Am. J. Mod. Phys. 2015, 4(3), 138-148. doi: 10.11648/j.ajmp.20150403.16

    Copy | Download

    AMA Style

    Alain Jerve Fotue, Sadem Christian Kenfack, Nsangou Issofa, Maurice Tiotsop, Michel Pascal Tabue Djemmo, et al. Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field. Am J Mod Phys. 2015;4(3):138-148. doi: 10.11648/j.ajmp.20150403.16

    Copy | Download

  • @article{10.11648/j.ajmp.20150403.16,
      author = {Alain Jerve Fotue and Sadem Christian Kenfack and Nsangou Issofa and Maurice Tiotsop and Michel Pascal Tabue Djemmo and Amos Veyongni Wirngo and Hilaire Fotsin and Lukong Cornelius Fai},
      title = {Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field},
      journal = {American Journal of Modern Physics},
      volume = {4},
      number = {3},
      pages = {138-148},
      doi = {10.11648/j.ajmp.20150403.16},
      url = {https://doi.org/10.11648/j.ajmp.20150403.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20150403.16},
      abstract = {In this paper, we investigate the time evolution of the quantum mechanical state of a polaron using the Pekar type variational method on the electric-LO-phonon and the magnetic-LO-phonon strong coupling in a quantum dot. We obtain the Eigen energies and the Eigen functions of the ground state and the first excited state, respectively. In a quantum dot, this system can be viewed as a two level quantum system qubit. The superposition state polaron density oscillates in the quantum dot with a period τ_0when the polaron is in the superposition of the ground and the first-excited states. The spontaneous emission of phonons causes the decoherence of the qubit. We show that the density matrix of the qubit decays with the time while the coherence term of the density matrix element 〖 p〗_01 (〖 or p〗_10) decays with the time as well for different coupling strengths, confinement lengths, and dispersion coefficients. The Shannon entropy is evaluated in order to investigate the decoherence of the system.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Decoherence of Polaron in Asymmetric Quantum Dot Qubit Under an Electromagnetic Field
    AU  - Alain Jerve Fotue
    AU  - Sadem Christian Kenfack
    AU  - Nsangou Issofa
    AU  - Maurice Tiotsop
    AU  - Michel Pascal Tabue Djemmo
    AU  - Amos Veyongni Wirngo
    AU  - Hilaire Fotsin
    AU  - Lukong Cornelius Fai
    Y1  - 2015/06/03
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajmp.20150403.16
    DO  - 10.11648/j.ajmp.20150403.16
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 138
    EP  - 148
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20150403.16
    AB  - In this paper, we investigate the time evolution of the quantum mechanical state of a polaron using the Pekar type variational method on the electric-LO-phonon and the magnetic-LO-phonon strong coupling in a quantum dot. We obtain the Eigen energies and the Eigen functions of the ground state and the first excited state, respectively. In a quantum dot, this system can be viewed as a two level quantum system qubit. The superposition state polaron density oscillates in the quantum dot with a period τ_0when the polaron is in the superposition of the ground and the first-excited states. The spontaneous emission of phonons causes the decoherence of the qubit. We show that the density matrix of the qubit decays with the time while the coherence term of the density matrix element 〖 p〗_01 (〖 or p〗_10) decays with the time as well for different coupling strengths, confinement lengths, and dispersion coefficients. The Shannon entropy is evaluated in order to investigate the decoherence of the system.
    VL  - 4
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Laboratory of Electronics and Signal Processing, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon

  • Sections